SYNTHESIS, MOLECULAR DOCKING AND CYTOTOXIC STUDY OF 7-METHOXY-2-(3-METHOXYLPHENYL)-1-BENZOFURAN-5-CARBALDEHYDE

Bapu R. Thorat ${ }^{\text {a }}$, Ravindra Jagtap ${ }^{\text {b }}$, Vaishali B. Thorat ${ }^{\text {c }}$, Annasaheb Khemanar ${ }^{\text {d }}$ and Ramesh S. Yamgar ${ }^{\text {e }}$
a. P. G. and Research centre, Ismail Yusuf Arts, Science and Commerce College, Jogeshwari (E), Mumbai 400060.
b. JJT University, Rajasthan.
c. IES, Junior College, Bandra (E), Mumbai.
d. Institute of Science, Fort, Mumbai
e. Patkar Varde College, Goregaon (W), Mumbai

Abstract

The 7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5-carbaldehyde was synthesized by known literature method (Wittig reaction approach) from vanillin. To deduce the anticancer and antibacterial activity of the 7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5-carbaldehyde, it is docked with different biomarkers of cancer cell and bacteria. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptorligand interaction studies revealed that 7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5carbaldehyde is most active against 4FNY and 1VOM biomarkers and have the features to prove themselves as anticancer drugs. It shows strong cytotoxicity against human lung (A459) and breast (MCF-07) cell lines.

Keywords: Benzofurans, Molecular docking, Anticancer, 1VOM, 4FNY, Wittig reaction.

1. Introduction:

Molecular modelling can accelerate and guide to the chemist or scientist for drug design and contribute to the understanding of the biochemical functions of gene products. These molecular modelling techniques used for the study of organic/inorganic/bio molecules use theoretical and computationally based methods to model or mimic the behavior of molecule/s and have been widely applied for understanding and predicting the behavior of molecular systems [1]. Molecular modelling has become an essential part of contemporary drug discovery processes of new molecules. A traditional approach for drug discovery of molecules relies on step-wise synthesis and screening of large numbers of compounds to optimize activity profiles of molecule which is to act as drug; this is extremely time consuming and costly method takes decades of years. The cost of these processes has increased significantly in recent years [2], and it takes over a decade for a very small fraction of compounds to pass the drug discovery pipeline from initial screening hits or leads, chemical optimization, and clinical trials before launching into the market as drug. The approaches and methodologies used in drug design have changed over time, exploiting and
driving new technological advances to solve the varied bottlenecks found along the way. There are several programs used for docking, including DOCK-6, FlexX, GLIDE, GOLD, FRED, and SURFLEX has been assessed and these programs proved to generate reliable poses in numerous docking studies.
Until 1990, the major issues were lead discovery and chemical synthesis of drug-like molecules; the emergence of combinatorial chemistry,[4] gene technology, and highthroughput tests $[5,6]$ has shifted the focus, and poor absorption, distribution, metabolism, and excretion (ADME) properties of new drugs captured more attention [7].
Protein docking is a computational problem to predict the binding of a protein with potential interacting partners. The docking problem can be defined as: Given the atomic coordinates of two molecules, predict their correct bound association [3], which is the relative orientation and position after interaction. There are three key components in protein docking: (1) representation of the molecules, (2) searching and (3) scoring of the potential solutions.

2. Materials and Methods:

Docking software used: Maestro 9.9 (Schrodinger). Protein Crystal Structures (PDB ID: 1RJB, 3FDN, 3LAU, 4BBG, 3V3M, 1BAG, 3F8S, 2b4J, 1Z92, 1YC, 4FNY, 2BOU, 1UFQ, 1VOM, 2AZ1, 1KDR, 3MK2, 1TE6, 1P62). These proteins are characterized by Ramachandran plot.

PDB of protein	Worked as	Source
4ASE	Vascular endothelial growth factor receptor 2	Homo sapiens
1YCR	MDM2 bound to the trans-activation domain of p53	Homo sapiens
1Z92	Interleukin-2 with its alpha receptor	Homo sapiens
2b4J	Recognition between hiv-1 integrase and ledgf/p75	Homo sapiens
3F8S	Dipeptidyl peptidase IV (DPP-4) in complex with inhibitor	Homo sapiens
1BAG	Alpha-amylase from bacillus subtilis complexed with maltopentaose	Bacillus subtilis
1RJB (FLT3)	FI cytokine receptor	Homo sapiens
3FDN	Serine/threonine-protein kinase 6	Homo sapiens
3LAU	Arora 2 kinase	Homo sapiens
4BBG	Human kinesin eg5 -like protein kif11	Homo sapiens
3V3M	3C-like proteinase [severe acute respiratory syndrome coronavirus (sars-cov) 3cl protease]	Homo sapiens
1TE6	Gamma enolase [human neuron specific enolase]	Homo sapiens
1VOM	Dictyostelium myosin	Dictyostelium discoideum
2BOU	EGF domains 1,2,5 of human emr2, a 7-tm immune system molecule	Homo sapiens
3MK2	Placental alkaline phosphatase	Homo sapiens
1KDR (Chain A)	Cytidine monophosphate kinase	Escherichia coli
1P62	Deoxycytidine kinase	Escherichia coli
1UFQ	Uridine-cytidine kinase 2	Homo sapiens
2AZ1	Nucleoside diphosphate kinase	Escherichia coli
4FNY	ALK tyrosine kinase receptor	Homo sapiens

2.1. Protocol for ligand-receptor docking:

The three dimensional structures of all proteins were taken from the PDB database. The native autoinducer and all water molecules were removed from basic protein structures.

Hydrogen were added using the templates for the protein residues. The three-dimensional structure of the ligand [7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5-carbaldehyde] was constructed. The ligand was then energy-minimized in the in-built ChemSketch module of the software.

2.2. Docking:

The active site of each protein were first identified and defined using an eraser size of $5.0 \AA$. The ligand was docked into the active site separately using the 'Flexible Fit' option. The ligand-receptor site complex was subjected to 'in situ' ligand minimization which was performed using the in-built CHARMm forcefield calculation. The nonbond cutoff and the distance dependence was set to $11 \AA$ and $(\varepsilon=1 \mathrm{R})$ respectively. The determination of the ligand binding affinity was calculated using the shape-based interaction energies of the ligand with the protein. Consensus scoring with the top tier of $\mathrm{s}=10 \%$ using docking score used to estimate the ligand-binding energies.

3. Study of molecular structure and properties:

Molecular structure has been studied by different molecular programs such as Avogadro, Glide, etc. The molecular parameters such as non-bonded atom bond lengths, bond angles, Drug likeness property has been studied by VEGA ZZ 3.0.3 program.
Fig 1: Van der Waal surface, bond length and bond angles of 7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5-carbaldehyde

Determination of bond angles

Distance between the atoms which are not attached directly

Fig 2: Most stable orientations of groups 7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5-carbaldehyde

Total energy: 376.941
$\mathrm{~kJ} / \mathrm{mol}$

Table 2: Some molecular functions / properties of 7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5carbaldehyde

Molecular formula:	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$
Total Energy	$17.8445 \mathrm{kcal} / \mathrm{mol}$.
Molecular weight	$\mathbf{2 9 8 . 3 5 6} \mathrm{g} / \mathrm{mol}$.
m/z values	$282.09(100), 283.09(18.4), 284.10(1.6)$
Elemental analysis (\% analysis)	$\mathrm{C}-72.33, \mathrm{H}-5.0, \mathrm{O}-22.67$.
H - donor	$\mathbf{4}$
\mathbf{H} - bond acceptor	$\mathbf{0}$
Energy of HOMO	-11.474 eV
Energy of LUMO	-04.831 eV
Formal charge	0
Gibbs free energy	$-28.29 \mathrm{~kJ} / \mathrm{mol}($ at $298 \mathrm{~K} \mathrm{\&} \mathrm{1atm)}$
Ovality	1.518348
Partition coefficient	4.355799
Heat of formation	$-309.6 \mathrm{~kJ} / \mathrm{mol}($ at $298 \mathrm{~K} \mathrm{\&} \mathrm{1atm)}$
Ideal gas thermal capacity	$304.908 \mathrm{~J} / \mathrm{mol.K}$
Water solubility	$0 \mathrm{mg} / \mathrm{lit}$
Stereochemistry	$\mathrm{C}(8)-\mathrm{C}(7):(\mathbf{Z})$
LogP	$2.872(\mathbf{n}-\mathrm{Octanol} / \mathrm{water)}$
Mol Refractivity	$77.0618 \mathrm{~cm} / \mathrm{mol}$
Lipinski Rule	$282.089 ; 4 ; 0 ; 4 ; 4.356$
Henry's Law Constant	7.842
Connolly Accessible Area	$527.721 \mathrm{~A}{ }^{2}$
Num Rotatable Bonds	4 bonds
Polar Surface Area	$48.67 \mathrm{~A}^{2}$
Sum of charges	0.0
Solvation energy	-4.857432 eV
Electrostatic Energy	$-90.9830 \mathrm{kcal} / \mathrm{mol}$
Dipole	2.7335 Debye
Membrane energy	0.931765 eV

Table 2: Application of VEGA ZZ 3.0.3 for study of Druglikeness propety:

Property	7-methoxy-2-(3-methoxylphenyl)-1- benzofuran-5-carbaldehyde	
By using Lipinski rule of five	Dalton	282.290
Molecular weight	(<10)	04
No. of H-bond acceptor	(<5)	00
No. of H-bond donor	(<5)	4.039
Virtual Log P	Ok	
Comment	Dalton	282.290
By using Ghose's rule of five		
Molecular weight	$20-70$	35
Number of atoms	$-0.4-5.6$	4.039
Vertual Log P	$40-130$	80.3925
Molar refractivity	Ok	
Comment		

4. Experimental Work:

A mixture of phosphonium salt ($1.5 \mathrm{~g}, 3.2 \mathrm{mmol}$), 3-methoxybenzoyl chloride (3.2 mmol) and triethylamine $(0.75 \mathrm{~g}, 7.4 \mathrm{mmol})$ in toluene (30 ml) was heated under reflux for 5 hr . The completion of reaction was confirmed by TLC. The reaction mixture was cooled to room temperature and adds 20 ml water to it and shake well. The organic layer was separated, washed with 10 ml water and dried by anhydrous sodium sulphate. Toluene was distilled off under reduced pressure and the (faint yellow) solid obtained was purified by column chromatography (using 35% ethyl acetate in pet ether as mobile phase) to afford the solid 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde (62 \%), yellow solid, m.p. 125$127^{\circ} \mathrm{C}$.
FT-IR (KBr): 2954, 1685, 1554, 1482, 1344, 1214, 1143, 846, 775, $682 \mathrm{~cm}^{-1}$.
 $\mathrm{OCH}_{3}-\mathrm{m}$); 4.03 (s, 3H, $\mathrm{OCH}_{3}-\mathrm{p}$); 6.99 (d, J = 3Hz, 1H, Ar-H); 7.42 (dd, J = $3 \& 5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H); 7.38 (d, J = 3Hz, 1H, Ar-H); 7.50-7.59 (m, 3H); 7.85 (s, 1H); 10.00 (s, 1H, -CHO).

Fig 3: NMR Spectra of 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde ($\mathbf{6 j}$)

4.1. Generation of docking sites:

The binding sites for the docking are generated by using Glide software. The site of the protein having more site score is considered for the docking of ligand. The site which having maximum site points, locate on the site in different colours as hydrophobic and hydrophilic maps. The hydrophilic maps are further divided into donor, acceptor, and metal-binding regions. Other properties characterize the binding site in terms of the size of the site, degrees of enclosure by the protein and exposure to solvent, tightness with which the site points interact with the receptor, hydrophobic and hydrophilic character of the site and the balance between them, and degree to which a ligand might donate or accept hydrogen bonds. These all properties are summarised in following table 3.
The docking site scores, size, volume exposure, enclosure, contact, hydrophobic and hydrophilic nature, donor and acceptor ratio of all proteins are shown in table 3.

Table 3: Properties of docking sites of receptors:

protein	Site Score	size	Dscore	volume	exposure	enclosure	contact	phobic	philic	balance	don/ acc
3V3M	0.913	75	0.852	258.279	0.611	0.715	0.927	0.473	1.200	0.395	0.510
4BBG	1.040	$\mathbf{2 2 3}$	1.034	503.867	0.522	0.758	1.035	1.274	1.108	1.150	0.725
3LAU	1.046	116	1.095	437.325	0.609	0.703	0.883	1.245	0.819	1.520	0.749
3FDN	1.047	206	1.02	$\mathbf{7 6 0 . 7 7 4}$	0.531	0.768	0.964	0.758	1.170	0.648	0.880
1RJB	1.073	100	1.037	195.51	0.492	0.807	$\mathbf{1 . 1 2 4}$	0.668	1.186	0.563	0.706
1BAG	0.989	143	0.989	425.663	0.676	0.681	0.849	0.343	1.103	0.311	$\mathbf{0 . 4 7 8}$
3F8S	1.009	146	1.012	489.118	0.647	0.711	0.855	0.298	1.089	0.274	0.762
2b4J	1.074	121	1.136	552.321	0.752	0.728	0.860	1.321	0.745	1.773	1.456
1Z92	0.961	95	1.013	316.246	0.749	0.599	0.699	0.396	0.805	0.492	1.427
1YCR	0.755	41	$\mathbf{0 . 7 5 4}$	$\mathbf{9 0 . 5 5 2}$	0.653	0.620	0.849	1.171	0.675	1.735	$\mathbf{2 . 0 0 6}$
1TE6	1.05	193	0.849	507.64	0.515	0.773	0.993	$\mathbf{0 . 0 0 8}$	1.703	$\mathbf{0 . 0 0 4}$	0.595
1VOM	1.074	222	1.114	618.772	0.605	0.754	0.934	1.022	0.853	1.198	0.708
2BOU	$\mathbf{0 . 4 6 4}$	$\mathbf{1 6}$	0.375	45.962	$\mathbf{0 . 8 0 7}$	$\mathbf{0 . 5 4 2}$	0.727	0.134	1.000	0.134	1.433
3MK2	0.872	73	0.914	179.389	0.731	0.574	$\mathbf{0 . 7 1 2}$	0.632	0.717	0.882	0.623
1KDR	1.047	276	0.963	749.112	0.472	0.768	1.009	0.463	1.343	0.345	0.661
1P62	1.048	200	0.948	372.841	0.438	0.770	1.007	0.49	1.393	0.352	0.520
1UFQ	1.009	176	1.042	756.315	0.656	0.684	0.862	0.51	0.947	0.538	0.931
2AZ1	$\mathbf{1 . 1 2 1}$	150	0.958	367.01	$\mathbf{0 . 3 8 5}$	$\mathbf{0 . 8 7 9}$	1.096	0.397	$\mathbf{1 . 5 6 2}$	0.254	0.665
4FNY	1.092	195	$\mathbf{1 . 1 6 1}$	426.349	0.556	0.724	0.932	$\mathbf{1 . 4 7 0}$	$\mathbf{0 . 6 5 4}$	$\mathbf{2 . 2 4 9}$	1.858

The docking site score of $2 \mathrm{AZ1}(\mathbf{1 . 1 2 1})$ receptor/protein is higher while that of 2BOU (0.464) is lowest is indicates that the $2 \mathrm{AZ1}$ protein PDB is more favorable for docking than the others. The size (223) and volume (760.774) available for docking is higher in 4BBG and 3FDN PDBs respectively but exposure to the ligand as compared to 2 BOU is lower. The exposure to the ligand is maximum in 2BOU and minimum in $2 \mathrm{AZ1}$ while reverse is the case for the enclosure area, it is higher in $2 \mathrm{AZ1}$ and minimum in 2 BOU . The overall contact area to the ligand is higher in 1RJB (1.124). The hydrophobic nature or character and balance between hydrophobic and hydrophilic nature of the active site is higher in 4FNY and 2b4J respectively while that of lower in 1TE6. The hydrophilic nature or character of the active site is higher in 2AZ1 and lower in 4FNY. The ligands having more hydrophilic nature are more tightly binds with 1TE6 and weakly binded to 4FNY (according to the hydrophobic to hydrophilic ratio i.e. balance is higher in 4FNY than lower in 1TE6).
The order protein in the decreasing order of hydrophilic character and increasing order of hydrophobic character is -1 TE $6>2 \mathrm{BOU}>2 \mathrm{AZ1}>3 \mathrm{~F} 8 \mathrm{~S}>1 \mathrm{BAG}>1 \mathrm{KDR}>1 \mathrm{P} 62>3 \mathrm{~V} 3 \mathrm{M}$ $>1 \mathrm{Z9} 2>1 \mathrm{UFQ}>1 \mathrm{RJB}>3 \mathrm{FDN}>3 \mathrm{MK} 2>4 \mathrm{BBG}>1 \mathrm{VOM}>3 \mathrm{LAU}>1 \mathrm{YCR}>2 \mathrm{~b} 4 \mathrm{~J}>$ 4FNY. This indicates that the ligands having more hydrophobic nature are binds easily 4FNY. The hydrogen bond donor/acceptor character ratio is higher in 1YCR (2.006) while lower in 1BAG (0.478) therefore the ligand contains more hydrogen bond acceptor atoms/groups are more tightly binds to 1YCR while those containing hydrogen bond donor atoms/groups are bind to 1BAG. The order protein in the decreasing order of H-bond donor to H -bond acceptor ratio is $-1 \mathrm{YCR}>4 \mathrm{FNY}>2 \mathrm{~b} 4 \mathrm{~J}>2 \mathrm{BOU}>1 \mathrm{Z} 92>1 \mathrm{UFQ}>3 \mathrm{FDN}>$ $3 \mathrm{~F} 8 \mathrm{~S}>3 \mathrm{LAU}>4 \mathrm{BBG}>1 \mathrm{VOM}>1 \mathrm{RJB}>2 \mathrm{AZ1}>1 \mathrm{KDR}>3 \mathrm{MK} 2>1 \mathrm{TE} 6>1 \mathrm{P} 62>3 \mathrm{~V} 3 \mathrm{M}$ $>1 \mathrm{BAG}$.

4.2. Molecular docking:

The estimation of binding affinity of the ligand-receptor/protein complex is still a challenging task. Scoring functions (docking score) in docking programs take the ligand-receptor/protein poses as input and provides ranking or estimation of the binding affinity of the pose. These scoring functions require the availability of receptor/protein-ligand complexes with known binding affinity and use the sum of several energy terms such as van der Waals potential, electrostatic potential, hydrophobicity and hydrogen bonds in binding energy estimation. The second class consists of force field-based scoring functions, which use atomic force fields used to calculate free energies of binding of ligand-receptor/protein complex.

Table 4A: Docking properties of 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde with different receptor or protein PDBs.

Description	Protein									
	1BAG	1YCR	1Z92	2b4J	3F8S	1TE6	1YOM	2BOU	3MK2	1KDR
Potential Energy OPLS 2005	77.188	77.188	77.188	77.188	77.188	77.188	77.188	77.188	77.188	77.188
RMS Derivative OPLS 2005	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
Glide lignum	13	13	13	3	3	11	11	11	11	11
Docking Score	-5.315	-4.914	-5.242	-4.098	-4.61	-3.525	-6.97	-4.30	-5.453	-4.205
Glide Ligand efficiency	-0.253	-0.234	-0.250	-0.195	-0.220	-0.168	-0.332	-0.205	-0.26	-0.20
Glide Ligand efficiency sa	-0.698	-0.646	-0.689	-0.538	-0.606	-0.463	-0.916	-0.565	-0.716	-0.552
Glide Ligand efficiency In	-1.314	-1.215	-1.296	-1.013	-1.140	-0.872	-1.723	-1.063	-1.348	-1.04
Glide gscore	-5.315	-4.914	-5.242	-4.098	-4.61	-3.525	-6.97	-4.30	-5.453	-4.205
glide lipo	-1.439	-2.155	-1.649	-0.671	-1.222	-0.448	-3.120	-1.27	-1.995	-0.761
glide hbond	-0.160	0	-0.055	0	-0.060	-0.079	-0.320	-0.227	-0.369	-0.336
glide metal	0	0	0	0	0	0	0	0	0	0
glide rewards	-1.828	-1.526	-1.688	-1.708	-1.484	-1.484	-1.654	-1.487	-1.628	-1.484
Glide evdw	29.249	26.565	29.280	26.962	27.370	24.728	33.446	23.618	29.017	30.618
Glide ecoul	-3.893	-0.874	-4.086	-3.982	-4.251	-3.197	-3.203	-2.309	-1.583	-2.077
glide erotb	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227
glide esite	-0.068	0	0	0	-0.064	-0.026	0	0	0	-0.008
Glide emodel	44.766	33.887	43.066	37.685	41.015	35.207	49.033	32.658	40.870	41.602
Glide energy	33.142	27.439	33.366	30.945	31.622	27.926	35.650	26.294	30.599	32.694
Glide einternal	0.407	5.154	2.144	1.468	0.786	0.810	3.969	0.835	0.084	0.44
glide confnum	1	2	1	1	2	1	2	1	2	1
Glide posenum	374	395	33	364	361	174	304	06	39	139
XP GScore	-5.315	-4.914	-5.242	-4.098	-4.61	-3.525	-6.97	-4.30	-5.453	-4.205
H-Bonds	01	00	01	00	01	01	01	00	01	01
pi-pi/pication interactions	00	00	01	01	01	00	02	00	03	04

Table 4B: Docking properties of 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde with different receptor or protein PDBs.

Description	Protein								
	$1 \mathrm{P62}$	1UFQ	2AZ1	4FNY	1RJB	3FDN	3LAU	3V3M	4BBG
$\begin{array}{ll} \hline \text { Potential } & \text { Energy } \\ \text { OPLS 2005 } & \end{array}$	77.188	77.188	77.188	77.188	77.188	77.188	77.188	77.188	77.188
RMS Derivative OPLS 2005	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
Glide lignum	11	11	11	11	9	9	6	9	10
Docking Score	-4.547	-4.843	-4.094	-7.159	-5.789	-5.897	-6.659	-3.373	-6.494
Glide efficiency Ligand	-0.217	-0.231	-0.195	-0.341	-0.276	-0.281	-0.317	-0.161	-0.309
Glide Ligand efficiency sa	-0.597	-0.636	-0.538	-0.941	-0.761	-0.775	-0.875	-0.443	-0.853
Glide Ligand efficiency In	-1.124	-1.197	-1.012	-1.77	-1.431	-1.458	-1.646	-0.834	-1.606
Glide gscore	-4.547	-4.843	-4.094	-7.159	-5.789	-5.897	-6.659	-3.373	-6.494
glide lipo	-0.813	-1.211	-0.794	-4.022	-1.643	-1.648	-3.084	-2.121	-1.398
glide hbond	0.18	-0.32	-0.153	0	-0.398	-0.349	-0.049	-0.421	-0.039
glide metal	0	0	0	0	0	0	0	0	0
glide rewards	-1.484	-1.484	-1.484	-1.699	-1.638	-1.636	-1.818	-1.486	-1.482
Glide evdw	30.505	-29.388	31.514	33.746	34.704	34.061	32.022	28.634	34.234
Glide ecoul	-4.625	-3.771	-1.704	-0.151	-4.01	-4.366	-1.949	-3.76	-1.306
glide erotb	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227
glide esite	-0.077	-0.019	-0.059	0	0	0	-0.042	-0.024	0
Glide emodel	45.275	-41.967	41.559	47.445	48.297	47.132	47.922	36.166	38.437
Glide energy	35.130	-33.159	33.215	33.594	38.714	38.427	33.970	32.394	35.359
Glide einternal	1.645	3.851	2.717	1.057	7.672	6.049	0.268	6.208	7.426
glide confnum	1	1	2	1	1	1	2	1	1
Glide posenum	246	289	367	248	337	7	246	4	3
XP GScore	-4.547	-4.843	-4.094	-7.159	-5.789	-5.897	-6.659	-3.373	-6.494
H-Bonds	01	02	01	00	01	2	01	01	00
00pi-pi/pi-cation interactions	04	00	00	00	01	00	00	00	00

Fig 4: 2D docking image of 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde with different proteins:

3LAU

3FDN

(274)

4FNY

1 P62

1UFQ

2AZ1

1VOM

1KDR

1TE6
3MK2

2BOU

Fig 5: 3D docking image of 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde with different proteins:

3LAU

3V3M

1YCR

4BBG

1BAG

2b4J

5. Cytotoxic study:

Lung cancer cell line (A459) and Breast cancer cell lines (MCF-07) was selected as a test system because it is a commonly available cancer cell lines. It has been historically shown to be a suitable cell line module for cytotoxicity studies. The study was conducted in based on
the in house standardized method and available literature to determine the cytotoxicity of test compound. The cancerous cell line viz. Breast (MCF - 07) and Lung (A - 549) were procured from National Center of Cell Science, Pune. The cells were allowed to acclimatize to the experimental laboratory conditions for a period of five days by regular pass aging of cells. Cell pass aging was done in the cell culture experimental room. Before the start of experiment the room was sterilized by keeping UV on for 20 minutes. The culture flasks were kept in $5 \% \mathrm{CO}_{2}$ incubator at $37^{0} \mathrm{C}$. The experimental room was cleaned and mopped daily with Liquid disinfectant. Each column was dedicated for specific test compound while two columns were used as cell control and two as positive control. Cells were exposed to the test compound for the period of around 18-24 hours.
Samples were freshly prepared in DMEM without phenol Red and then appropriate dilutions were prepared just prior to start of study. Cell viability assay was performed as per the standard procedure. The obtained data was subjected to statistical evaluation. CC50 values were calculated as the concentrations that show 50% inhibition of proliferation on the cell line.

Table 5: Percent cytotoxicity

Conc. $\mathbf{m g} / \mathbf{m l}$	MTT assay			MB assay
	A $-\mathbf{4 5 9}$ cells	MCF $-\mathbf{0 7}$ cells	A $-\mathbf{4 5 9}$ cells	MCF $\mathbf{0 7}$ cells
$\mathbf{1 0}$	86.10	$\mathbf{9 5 . 9 7}$	$\mathbf{9 0 . 9 7}$	90.67
7.5	66.16	91.26	72.48	69.07
$\mathbf{5 . 0}$	51.34	81.85	49.03	50.43
$\mathbf{2 . 5}$	35.68	74.79	40.19	34.10
$\mathbf{1 . 0}$	24.85	59.26	34.97	23.02
$\mathbf{0 . 5 0}$	18.02	29.15	26.39	15.60
$\mathbf{0 . 2 5}$	10.33	14.09	19.56	0.74
$\mathbf{0 . 1 0}$	5.20	1.85	7.10	3.44

6. Result and discussion:

The PBD 1YCR has more hydrogen bond donor character while the PDB 1BAG has more hydrogen bond accepting character at the docking site. The docking score table indicate that 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde is more active against 4FNY (docking score -7.159) and 1VOM (docking score -6.970) while is less active against 3V3M (docking score -3.373) and 1YE6 (docking score -3.525). There are number of types of interactions observed between ligand and receptor such as hydrogen bonding, pi-pi interactions, ion-pi interactions, hydrophobic and hydrophilic interactions, ionic interactions, van der Waal interactions, etc along with steric interactions determine the docking score.

Table 6: Table of don/acc ratio, docking score, glide esite and polar interactions of 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde with different receptor or protein PDBs.

Proteins	Description of property and amino acid information				
	don/acc at the docking site	Docking score	Glide esite	No. of hydrogen bonds (amino acid residues)	Polar interactions (amino acid residues) (\square - \square, cation)
1RJB	0.706	-5.789	0	01 (ARG595) (with side chain)	ARG595
3FDN	0.880	-5.897	0	02 (ARG137) (with side chain), (ALA213) (with backbone)	--
3LAU	0.749	-6.659	-0.042	01 (ARG220) (with side chain)	--
4BBG	0.725	-6.494	0	--	--

3V3M	0.510	-3.373	-0.024	01 (GLN110) (with side chain)	--
1BAG	0.478	-5.315	-0.068	01 (ARG174) (with side chain)	--
3F8S	0.762	-4.61	0	$\begin{aligned} & 01 \text { (TYR547) } \\ & \text { (with side chain) } \end{aligned}$	PHE357
2b4J	1.456	-4.098	0	--	C-LYS360
1Z92	1.427	-5.242	0	$\begin{aligned} & \hline 01 \text { (A-LYS76) } \\ & \text { (with side chain) } \end{aligned}$	A-LYS535
1YCR	2.006	-4.914	0	--	--
4FNY	1.858	-7.159	0	--	--
2BOU	1.433	-4.300	0	--	--
1UFQ	0.931	-4.843	-0.019	$\begin{aligned} & 02 \text { (C-LYS202, D-LYS202) } \\ & \text { (with side chain) } \end{aligned}$	--
1VOM	0.708	-6.970	0	$\begin{aligned} & 01 \text { (TYR135) (with side } \\ & \text { chain) } \end{aligned}$	PHE129, PHE129
2AZ1	0.665	-4.094	-0.059	$\begin{aligned} & 01 \text { (A-ARG19) (with side } \\ & \text { chain) } \end{aligned}$	--
1KDR	0.661	-4.205	-0.008	01 (GLY19) (with backbone)	$\begin{aligned} & \text { ARG41, ARG131, ARG41, } \\ & \text { ARG131 } \end{aligned}$
$1 \mathrm{P62}$	0.520	-4.547	-0.027	01 (ARG128) (with side chain)	ARG194 (with three rings), LYS34
3MK2	0.623	-5.453	0	$\begin{aligned} & \hline \begin{array}{l} 01 \text { (ASN134) } \\ \text { chain) } \end{array} \\ & \hline \end{aligned}$	ARG125, HID162, HID162
1TE6	0.595	-3.525	-0.026	01 (B-ARG14) (with side chain)	--

Glide esite explains the polar interaction in the active site between ligand and amino acid residue at the docking site after recombination. The polar interactions between the aldehyde and amino acid residues of the protein are only observed in 1BAG (-0.068), 2AZ1 (-0.059), 3LAU (-0.042), 1P62 (-0.027), 1TE6 (-0.026), 3V3M (-0.024), 1UFQ (-0.019) and 1KDR (0.008) while these are totally absent with remaining PDBs. The aldehyde shows higher polar interaction 3MK2, 1VOM, 1BAG, 1TE6, 3V3M, and 2b4J proteins PDBs. This is one of the reason for the higher docking score of aldehyde in 1VOM. Also the molecule containing three hydrogen atom acceptors and hydrogen atom donor character of 4FNY at docking site is higher. The docking score of aldehyde during docking with 4FNY is higher (even though there is absence of hydrogen bonding and stronger pi-cation/anion interactions and polar interactions) because the molecule is completely fit into docking site with minimum internal strain and deformation of the geometry.
The aldehyde does not have any hydrogen atom which is capable of forming L (ligand) $\rightarrow \mathrm{P}$ (protein) hydrogen bonding. It contains sp^{2} and sp^{3} hybridized oxygen atoms (carbonyl, ether and aromatic) capable of forming $\mathrm{P} \rightarrow \mathrm{L}$ type of hydrogen bonding during interaction. The backbone of ALA and GLY amino acids and side chain of ARG, GLN, TYR, ASN and LYS forming hydrogen bonding with ligand.

Table 7: Table of glide evdw, glide energy, electrostatic and polar interactions 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde with different receptor or protein PDBs.

Proteins	Description of property and amino acid information					
	Glide evdw	Glide energy	Electrostatic interactions (blue)	Electrostatic interactions (pink)	Polar (amino acid residues)	
	$\mathbf{- 3 4 . 7 0 4}$	$\mathbf{- 3 8 . 7 1 4}$	ARG595	GLU573, ASP593, GLU656, GLU661	SER574, SER660	
3FDN	-34.061	-38.427	ARG137, LYS141, LYS162	GLU211, GLU260	THR217, ASN261	
3LAU	-32.022	-33.970	ARG137, LYS162,	GLU211	--	

			ARG220		
4BBG	-34.234	-35.539	ARG119, ARG221	$\begin{aligned} & \text { GLU116, GLU118, } \\ & \text { ASP130, GLU215 } \\ & \hline \end{aligned}$	--
3V3M	-28.634	-32.394	--	GLU240	GLN107, GLN110, ASN203, HIE246, THR292
1BAG	-29.249	-33.142	ARG174	ASP176, ASP269	GLN63, ASN101, HID102, GLN208, HID268, ASN273
3F8S	-27.370	-31.622	ARG429, LYS554, ARG669	GLU205, GLU206	SER209, GLN553
2b4J	-26.962	-30.945	$\begin{aligned} & \text { C-LYS360, C- } \\ & \text { LYS364, C-LYS402 } \end{aligned}$	C-GLU395	A-GLN164, A-GLN168, C-THR398, C-THR399
1Z92	-29.280	-33.366	$\begin{aligned} & \text { A-LYS32, A-LYS35, } \\ & \text { A-LYS76 } \end{aligned}$	B-ASP-1, B-GLU1	A-ASN33, A-ASN71, AGLN74
1YCR	-26.565	-27.439	A-LYS51, B-LYS24	A-GLU52, B-GLU28	--
4FNY	-33.746	-33.594	--	GLU1132, GLU1197, ASP1203, ASP1270	--
2BOU	-23.618	-26.294	ARG22	GLU32	SER28, SER29, SER31
1UFQ	-29.388	-33.159	C-LYS202, D- LYS201, D-LYS202	$\begin{aligned} & \hline \text { C-GLU194, } \quad \text { C- } \\ & \text { GLU195, D-GLU194, } \\ & \text { D-GLU195 } \end{aligned}$	--
1VOM	-33.446	-35.650	LYS130, ARG131	GLU187	ASN127, ASN188, ASN233, ASN234, ASN235, GLN665
2AZ1	-31.514	-33.215	A-ARG19, B- ARG147, E-ARG19	A-GLU30, E-ASP24	$\begin{aligned} & \text { B-THR27, B-THR31, D- } \\ & \text { THR31 } \end{aligned}$
1KDR	-30.618	-32.694	LYS18, ARG41, ARG131, ARG158, ARG181	--	SER14, SER101, GLN161
3MK2	-29.017	-30.599	ARG125	GLU128, GLU181	THR124, ASN134, HID162, GLN184, GLN189, ASN193
1TE6	-24.728	-27.926	$\begin{aligned} & \text { A-LYS192, A- } \\ & \text { LYS196, A-LYS201, } \\ & \text { B-ARG14 } \end{aligned}$	B-ASP208	$\begin{array}{lc} \hline \text { A-HID189, } & \text { A-THR190, } \\ \text { A-THR204, B-SER156, } \\ \text { B-HID157 } & \\ \hline \end{array}$
1P62	-30.505	-35.130	LYS34, ARG128, ARG188, ARG192, ARG194	GLU53, GLU127, GLU197	SER35, THR37

Glide evdw explains the van der Waal energy of the complex of ligand and amino acid residue at the docking site after recombination. The comparison between glide evdw and glide energy shows that van der Waal energy shows major contribution than coulombic energy for the stabilization of complex. The van der Waal interaction is depends on surface area (polar and non-polar) of the ligand, as surface area increases, van der Waal energy increases and vice versa. The contribution of glide evdw into the docking score is considerable. The Glide evdw of the interaction in decreasing order is as $1 \mathrm{RJB}>4 \mathrm{BBG}>3 \mathrm{FDN}>4 \mathrm{FNY}>1 \mathrm{VOM}>3 \mathrm{LAU}$ $>2 \mathrm{AZ1}>$ \qquad $>2 \mathrm{BOU}$.
Glide energy is summation of coulomb and van der Waal energy of interaction. The glide energy table indicates that, the comparatively coulombic force and van der Waal interactions (energies) are higher for the aldehyde-1RJB complex. This is due to higher surface area (both polar and non-polar) of 1RJB available for interaction with aldehyde. The aldehyde has higher glide energy during the interaction with PBDs in the decreasing order as 1RJB > $3 \mathrm{FDN}>1 \mathrm{VOM}>4 \mathrm{BBG}>1 \mathrm{P} 62>3 \mathrm{LAU}>4 \mathrm{FNY}>$ \qquad $>2 \mathrm{BOU}$.
Along with major interactions, there are some other interactions such polar interactions (faint blue colour), hydration sites (orange, interaction with water), electrostatic interactions (blue
and pink) and hydrophobic interaction (major weak interaction with maximum number of amino acids) present between the ligand-protein complex.
The table 7 [Electrostatic interactions (blue)] shows that, two amino acids in all proteins as ARG and LYS shows positive interactions (hydrogen bonding between proton of protein and O / N of ligand or electrostatic interaction between positive centre of protein and negative / electron density of ligand). Both the amino acids containing amino group in their side chain which is capable of forming such type of interactions in neutral or protonated forms. Benzofuran aldehyde shows stronger such type of interaction with same amino acids of 1P62, $1 \mathrm{KDR}, 1 \mathrm{TE} 6,2 \mathrm{AZ1}, 1 \mathrm{Z} 92$, 1UFQ, 2b4J, 3F8S, 3LAU and 3FDN indicates that orientation of the molecule does not change during docking in major extend by the changing of skeleton or functional group. But such type of interaction is weaker in 1RJB, 1BAG, 2BOU and 3MK2 whereas is absent with 3 V 3 M and 4 FNY .
The table 7 [Electrostatic interactions (pink)] shows that, two amino acids in all proteins as ASP and GLU shows negative interactions (hydrogen bonding between proton of ligand and oxygen of protein or electrostatic interaction between positive centre of ligand and negative / electron density of protein). Both the amino acids containing carboxylic acid group in their side chain which is capable of forming such type of interactions in neutral or deprotonated form. This type interaction depends on the number of positive charge centre present in the ligand molecules and number of donor amino acids present in the docking site. 1RJB, 4BBG, 4FNY, 1UFQ and 1P62 PDBs shows maximum number of such type of interactions with aldehyde while 3LAU, 3V3M, 2BOU, 2b4J, 1VOM and 1TE6 shows minimum number of such interactions and are absent in 1 KDR .
Benzofuran aldehyde molecule is hydrophobic in nature, even though it has strong region for hydrogen bonding, pi-pi interactions and hydrophobic interactions. This interaction would trigger the change in orientation of structure and their groups during binding. The group of aldehyde such as $\mathrm{C}=\mathrm{O}$, $-\mathrm{O}-$, aromatic -O - groups/atoms are capable for the formation of hydrogen bonding. The aromatic ring and $-\mathrm{CH}_{3}$ group put some limitations in the packing of micellar rearrangement as well as reducing the chance of forming hydrogen bonding with amino acids residue of protein.

Table 8: Table of glide lipo and polar interactions of 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5carbaldehyde with different receptor or protein PDBs, hydrophobic and hydrophilic character of PDBs.

Proteins	Description of property and amino acid information					
	phobic	philic	Glide lipo	Pi-pi interactions (green)	Pi-cation (pink)	
1RJB	0.668	1.186	-1.643	ARG595	--	
3FDN	0.758	1.170	-1.648	--	--	
3LAU	1.245	0.819	-3.084	--	--	
4BBG	1.274	1.108	-1.398	--	--	
3V3M	0.473	1.200	-2.121	--	--	
1BAG	0.343	1.103	-1.439	--	--	
3F8S	0.298	1.089	-1.222	PHE357	--	
2b4J	1.321	0.765	-0.671	--	C-LYS402	
1Z92	0.396	0.805	-1.649	--	A-LYS35	
1YCR	1.171	0.675	-2.155	--	--	
4FNY	$\mathbf{1 . 4 7 0}$	$\mathbf{0 . 6 5 4}$	-4.022	--	--	
2BOU	0.134	1.000	-1.270	--	--	
1UFQ	0.510	0.947	-1.211	--	--	
1VOM	1.022	0.853	-3.120	PHE129, PHE129	--	
2AZ1	0.397	1.562	-0.794	--	--	
1KDR				ARG41, ARG41,	ARG131,	
3MK2	0.463	1.343	-0.761	ARG131	--	

1TE6	$\mathbf{0 . 0 0 8}$	$\mathbf{1 . 7 0 3}$	$\mathbf{- 0 . 4 4 8}$	--	--
1P62	0.49	1.393	-0.813	ARG194, ARG194	ARG194, LYS34

Glide lipo explains the lipophilic and lipophobic attraction between ligand and amino acid residue at the docking site after recombination. The molecule is undissociated and thus available for penetration through various lipid barriers. The rate of penetration is strongly depends on the lipophilicity of the drug molecule in its unionised form. The lipophilichydrophilic balance plays very important role in passive transport and active transport along with drug metabolism. As length of hydrophobic chain increases, both partion coefficient and anaesthetic potency increases. Lipophilic and phobic attraction between aldehyde and amino acid residue at the docking site is stronger with 4 FNY, 3LAU, 1P62, 1BAG, 1YCR, 1RJB PDBs at the neutral $\mathrm{pH}=7$. At lower pH , amine get protonated and its lipophilicity character goes on decreasing. The aldehyde shows weaker lipophilic and hydrophobic attraction with 1TE6, 1P62, 2AZ1, 1KDR, 2BOU and 1BAG.
The electron rich pi-system (containing electron donating group) are generally interact with other electron deficient pi-system having electron withdrawing group. These are denoted by green colour and are called as hydrophobic interactions. Also, electron rich pi-centre interacts with cation (denoted by dark blue colour) and electron deficient centre interact with anion (denoted by pink colour). The benzofuran aldehyde shows the pi-pi interactions with the amino acid residue containing aromatic ring or pi electrons, the amino acids such as ARG ($\mathrm{C}=\mathrm{N}$ bond) and PHE \& HID (aromatic ring) shows such interactions with aldehyde. The pication interaction are shown by those amino acid residue containing free cation or partial positive charge centre in their side chain such as LYS and ARG, both containing amino groups which get protonated and forming quaternary ammonium cation which get interact with pi-electrons of aldehyde. The polar hydroxyl group (hydrogen having partial positive charge/oxygen having partial negative charge/lone pair of electrons of oxygen) interact with aromatic ring. These type of interactions are depends on the orientation of the molecule in the docking site and amino acid arrangement in the same.
Based on the results of MTT and MB assay, it is concluded that 7-methoxy-2-(3-methoxyphenyl)-1-benzofuran-5-carbaldehyde more toxic against breast cancer cell line and cancerous lung cell line.

7. Acknowledgement:

The authors are grateful to the Principal and Head, Government of Maharashtra, Ismail Yusuf Arts, Science and Commerce College, Mumbai 60, India, and Principal and Head, Department of Chemistry, Patkar Varde College, Goregaon (W), Mumbai, India for his constant encouragement. For the spectral analyses and characterization, basic facilities and helpful discussions during the synthesis the authors are thankful to Ram Jadhav, Dr. Dileep Khandekar, Dr. D D Patil.
The authors are specially thankful to Schrodinger software company group for their help and support.

8. References:

1. Leach, A. R. Molecular Modelling: Principles and Applications, Second Edition, Published by Pearson Education EMA, January 2001.
2. Ooms, F., Molecular modelling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem. 2000, 7 (2), 141-158.
3. Halperin I, Ma B, Wolfson H, and Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. PROTEINS: Structure, Function, and Genetics, 2002, 47:409-443.
4. Acc Chem Res 1996;29: Several articles in issue 3.
5. Fernandes P. B. Technological advances in high-throughput screening. Curr Opin Chem Biol, 1998;2:597-603.
6. Hertzberg RP, Pope AJ. High-throughput screening: Newtechnology for the 21st century. Curr Opin Chem Biol 2000;4:445-451.
7. Clark DE. Computational prediction of ADMET properties: Recent developments and future challenges. Annu Rep Comput Chem 2005;1:133-151.
8. Bapu R Thorat; Dyneshwar Shelke; Ramdas Atram and Ramesh Yamgar, wittig reaction approach for the synthesis of 7-methoxy-2-[4-alkyl/aryl]-1-benzofuran-5carboxaldehyde, hl, vol. 3: (3), 2013, 385-396.

SUPPORTING DATA

Table: Molecular properties of 7-methoxy-2-(3-methoxylphenyl)-1-benzofuran-5-carbaldehyde

mol MW	dipole	SASA	Donor HB	Accpt HB
282.295	4.278	546.524	0	4
Potential Energy- OPLS-2005	RMS Derivative- OPLS-2005	volume	dip^2/V	Glob
77.188	0.004	918.257	0.01993	0.835985
FOSA	FISA	PISA	WPSA	ACxDN^.5/SA
202.644	77.289	266.592	0	0
QPpolrz	QPlogPC16	QPlogPoct	QPlogPw	QPlogPo/w
31.214	9.078	12.333	6.652	3.115
QPlogS	CIQPlogS	QPlogHERG	QPPCaco	QPlogBB
-3.991	-4.112	-5.457	1832.185	-0.355
		IP(eV)	Auman	Oral
QPPMDCK Percent Human	Oral			
951.894	QPlogKp	8.69	3	Absorption
SAfluorine	-1.717	PSA	\#NandO	Rule Of Five
0	SAamideO	61.719	4	0
Rule Of Three	0	\#metab	QPlogKhsa	\#ringatoms
0	EA(eV)	3	0.086	15
\#in34	0.812	\#noncon	\#nonHatm	Jm
0	\#in56	0	21	0.553

Received on December 25, 2014,

